Digital Image Processing

Image Compression

Dr. Ahmed Yousry

Preview

- Methods of compressing data prior to storage and / or transmission are of significant practical and commercial
- Image compression addresses the problem of reducing the amount of data required to a digital image.
- The underlying basis of the reduction process is the removal of redundant data.

Fundamentals

- The data compression refers to the process of reducing the amount of data required to represent a given quantity of information.
- The difference of data and information .
- Data are the means by which information is conveyed نقل.
- Data redundancy is a central issue in digital image compression

Fundamentals

The relative data redundancy RD :

$$R_D = 1 - \frac{1}{C_R}$$

Where CR is compression ratio.

$$C_R = \frac{n_1}{n_2}$$

n1, n2 donate the number of information - carrying units in two data set that represent the same information.

```
n1=n2 CR =1 RD =0 n1 contains no redundant data n2 << n1 CR \rightarrow \infty RD \rightarrow 1 significant compress & High redundant data n2 >> n1 CR \rightarrow 0 RD \rightarrow -\infty n2 contains much more data than n1 undesirable case
```

3 basic Data redundancies

Coding Redundancy .

- Spatial and Temporal Redundancy.
- i.e. Video sequence (Correlated pixels are not repeated.)
- Irrelevant Information.
- Information that ignored by human visual system

Coding Redundancy

 Lets assume, that a discrete random variable Γκ in the interval [0, 1] represents the gray levels of an image and each Γκ occurs with probability

$$P_r(r_K)$$

$$P_r(r_K) = \frac{n_K}{n}$$
 k=0,1,2,....L-1

Where L is the number gray levels,

 \mathbf{n}_{K} is the number of times that the K^{th} gray level appears in image .

n is the total number of pixel in the image.

Coding Redundancy

The average length of the code words assigned to the various gray level values

$$L_{avg} = \sum_{K=0}^{L-1} l(r_K) p_r(r_K)$$

where $l(r_k)$ no. \of bits used to represent each gray $p_r(r_k)$ probability that gray level occurs

Example

r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_0 = 0$	0.19	000	3	11	2
$r_1 = 1/7$	0.25	001	3	01	2
$r_2 = 2/7$	0.21	010	3	10	2
$r_3 = 3/7$	0.16	011	3	001	3
$r_4 = 4/7$	0.08	100	3	0001	4
$r_5 = 5/7$	0.06	101	3	00001	5
$r_6 = 6/7$	0.03	110	3	000001	6
$r_7 = 1$	0.02	111	3	000000	6

TABLE 8.1 Example of variable-length coding.

$$L_{avg} = \sum l(r_K) p_r(r_K)$$

$$= 2(0.19) + 2(0.25) + 2(0.21) + 3(0.16) + 4(0.08)$$

$$+ 5(0.06) + 6(0.03) + 6(0.02)$$

$$= 2.7bits.$$

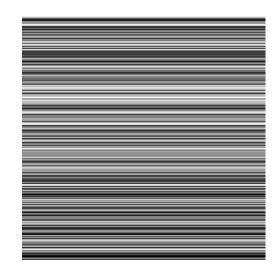
Example

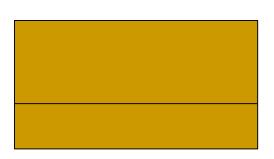
- The resulting compression ratio C_R is 3/2.7 or 1.11.
- Thus approximately 10% of the data resulting from the use of code 1 is redundant.
- The exact level of redundancy can be determine from

$$R_D = 1 - \frac{1}{1.11} = 0.099$$

Spatial and Temporal redundancy

- Each line has the same intensity
- All 256intensity are of equal probability.
- Pixels intensity are independent of each other
- Pixels are correlated vertically
- Pixels intensity can be predicted from their Neighbor intensities, so the information carried by one pixel is small.

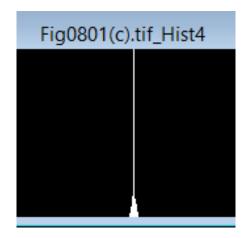




Histogram

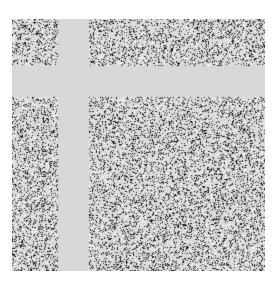
Irrelevant Information

- Information that ignored by HVS are obvious candidates for omission.
- Original size is 256X256X8
- All are seems to be of the same color
- Compression =256X256X8/8 = 65536:1



Irrelevant Information

- This type of redundancy is different from the other 2 types
- Its elimination is possible because the information itself is not essential for HVS.
- Its removal referred to Quantization
- This means mapping of a broad range of intensity into limited range
- Quantization is irreversible operation.



How do we measure information?

What is the information content of a message/image?

What is the minimum amount of data that is sufficient to describe completely an image without loss of information?

Modeling Information

Information generation is assumed to be a probabilistic process.

Idea: associate information with probability!

A random event E with probability P(E) contains:

$$I(E) = log(\frac{1}{P(E)}) = -log(P(E))$$
 units of information

Note: I(E)=0 when P(E)=1

The event always occurs

How much information does a pixel contain?

Suppose that gray level values are generated by a random variable, then r_k contains:

$$I(r_k) = -log(P(r_k))$$
 units of information!

How much information does an image contain?

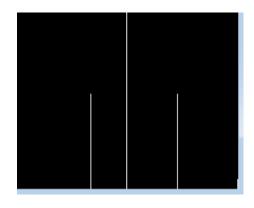
Average information content of an image: •

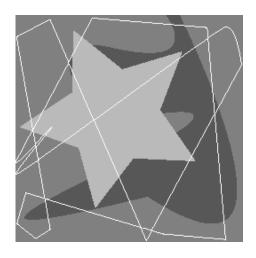
using
$$I(r_k) = -\log(P(r_k))$$
 Entropy
$$H = -\sum_{k=0}^{L-1} P(r_k) \log(P(r_k))$$
 units/pixel

It is not possible to code an image with fewer than H bits/pixel

Example:

- = H = -[.25 log₂ 0.25 +.47 log₂ 0.47 +
- \bullet .25 $\log_2 0.25 + .03 \log_2 0.03$
- = [-0.25(-2) + .47(-1.09) + .25(-2) + .03(-5.06)]
- = 1.6614 bits/pixel





What about H for the second type of redundancy?

Fidelity Criteria

Objective fidelity criterion

Loss of information - compress - decompress .

Subjective fidelity criteria

Quality of image.

Fidelity criteria

- Irrelevant information represents a loss, so we need a mean of quantifying the nature of loss
- When the level of information loss can be expressed as a function of the original or input image and the compressed and decompressed output image, it is based on an objective fidelity criterion.
- Example : the error at any x,y

$$e(x, y) = \hat{f}(x, y) - f(x, y)$$
Approximate Original

The total error

$$\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\hat{f}(x, y) - f(x, y) \right]$$

The square root

$$r m s = \left[\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\hat{f}(x, y) - f(x, y) \right]^{\frac{1}{2}} \right]^{\frac{1}{2}}$$

The mean square signal - to - noise

$$SNR_{rms} = \frac{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \hat{f}(x, y)^{2}}{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[\hat{f}(x, y) - f(x, y)\right]^{2}}$$

Fidelity Criteria(Subjective)

TABLE 8.3
Rating scale of the Television
Allocations Study
Organization.
(Frendendall and Behrend.)

Value	Rating	Description
1	Excellent	An image of extremely high quality, as good as you could desire.
2	Fine	An image of high quality, providing enjoyable viewing. Interference is not objectionable.
3	Passable	An image of acceptable quality. Interference is not objectionable.
4	Marginal	An image of poor quality; you wish you could improve it. Interference is somewhat objectionable.
5	Inferior	A very poor image, but you could watch it. Objectionable interference is definitely present.
6	Unusable	An image so bad that you could not watch it.

Huffman Coding (coding redundancy)

- A variable-length coding technique.
- Optimal code (i.e., minimizes the number of code symbols per source symbol).
- Assumption: symbols are encoded one at a time!

Huffman Coding (cont'd)

• Forward Pass

- 1. Sort probabilities per symbol
- 2. Combine the lowest two probabilities
- 3. Repeat *Step2* until only two probabilities remain.

Original source			. Source r	eduction	
Symbol	Probability	1	2	3	4
a_2	0.4	0.4	0.4	0.4 _	0 .6
$-\frac{a_{2}}{a_{6}}$	0.3	0.3	0.3	0.3	0.4
a_1	0.1	0.1	→ 0.2 →	▶ 0.3 -	0.4
a_4	0.1	0.1	0.1		
a_3	0.06	- 0.1			
a_5	0.04				

Huffman Coding (cont'd)

Backward Pass

Assign code symbols going backwards

Original source		Source reduction								
Sym.	Prob.	Code	Sili	1		2		3	4	4
a_{2} a_{6} a_{1} a_{4} a_{3} a_{5}	0.4 0.3 0.1 0.1 0.06 0.04	1 00 011 0100 01010 01011	0.4 0.3 0.1 0.1 - 0.1	1 00 011 0100 0101	0.4 0.3 —0.2 0.1		0.4 0.3 — 0.3	00 -	0.6 0.4	0

Huffman Coding (cont'd)

L_{avq} using Huffman coding:

$$L_{avg} = E(l(a_k)) = \sum_{k=1}^{6} l(a_k)P(a_k) =$$

L_{avq} assuming binary codes:

6 symbols, we need a 3-bit code

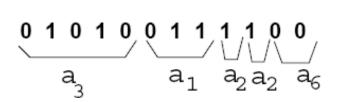
$$(a_1: 000, a_2: 001, a_3: 010, a_4: 011, a_5: 100, a_6: 101)$$

$$L_{avg} = \sum_{k=1}^{6} l(a_k)P(a_k) = \sum_{k=1}^{6} 3P(a_k) = 3 \sum_{k=1}^{6} P(a_k) = 3 \text{ bits/symbol}$$

Huffman Coding/Decoding

After the code has been created, coding/decoding can be implemented using a look-up table.

Note that decoding is done unambiguously.



Ori	iginal sou	rce
Sym.	Prob.	Code
a.	0.4	1
a_2 a_6 a_1	0.3	00
a.	0.1	011
a.	0.1	0100
a.	0.06	01010
a ₄ a ₃ a ₅	0.04	01011

Arithmetic (or Range) Coding (coding redundancy)

- Instead of encoding source symbols one at a time, sequences of source symbols are encoded together.
 - There is no one-to-one correspondence between source symbols and code words.
- Slower than Huffman coding but typically achieves better compression.

Arithmetic Coding (cont.)

Encode message: $\alpha_1 \alpha_2 \alpha_3 \alpha_3 \alpha_4$

1) Start with interval [0, 1)

0]

Probability		
0.2		
0.2		
0.4		
0.2		

2) Subdivide [0, 1) based on the probabilities of α_i

3) Update interval by processing source symbols

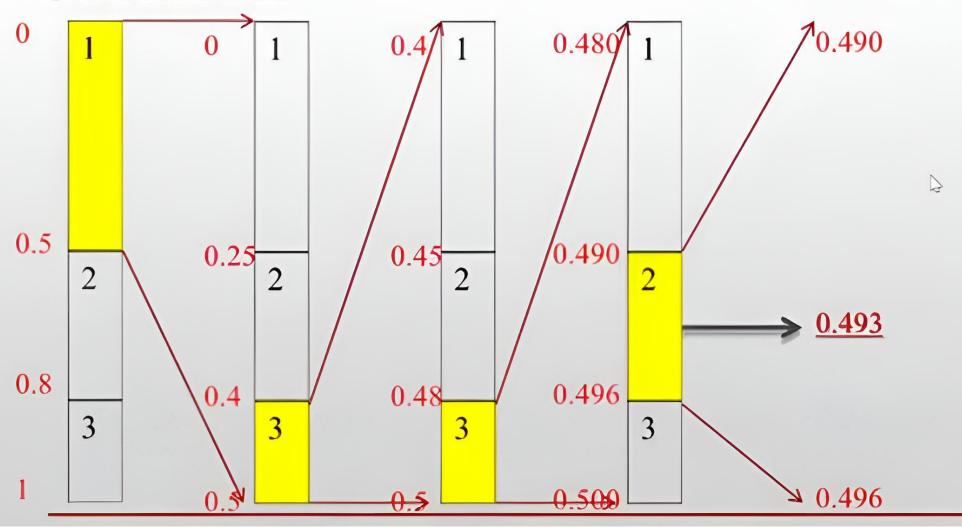
Initial S	Subinterval
[0. [0.	.0, 0.2) .2, 0.4) .4, 0.8) .8, 1.0)

Decoder Example:

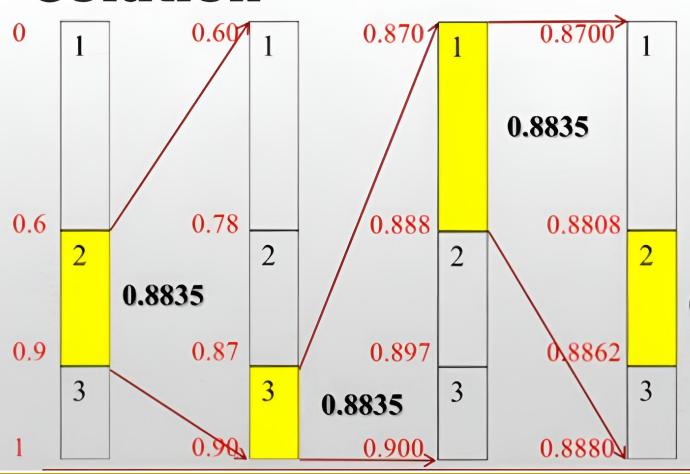
- Decipher the tag value 0.8835 for the symbols $\{1,2,3\}$
- knowing that :
- P(1) = 0.6, p(2) = 0.3, p(3) = 0.1

Solution

Encode the stream: 1332



Solution tag value 0.8835



Is 0.8835 the average ?? Yes, Stop ...

0.8835

The Code is 2312

